Your Algebra Homework Can Now Be Easier Than Ever!

Introduction to Maple

Maple is a computer algebra system primarily designed for the manipulation of symbolic expressions. While the core functionality of Maple is similar to that of Mathematica, the main advantage to Maple is a user friendly interface which
al lows users to enter mathematical ex pressions as they would normally write them.

1 Maple Basics

1.1 Entering Expressions

Maple has two main modes, command line and worksheet mode. The default
mode, worksheet, brings up a blank page where you can enter expressions by
typing the equation and evalute them by pressing enter. Maple input is the same
as you would write mathematically, so entering 2+3*5 would yield 17. (Note
that Maple does follow order of operations, however, if you want to make sure
expressions are evaluated in the correct order, use parenthesis . ex: 2+(3*5))

Default worksheet Maple does not require you to end a command with a
semicolon. You will only need to use a semicolon if you want to enter multiple
expressions on one line . 2*3;2*5 would output 6 and 10. If you want to supress
output, follow up the commands with a colon instead. 2*3:2*5: would evaluate
to the correct answers, but the results would not be shown (in this case, the colon
defeats the point of the evaluation, but it can be useful for other operations).

By default, Maple evalutes numbers by using fractions . If you want a decimal
approximation, use evalf(number, digits), so evalf(Pi,5) would yield 3.1416.
You can also add a decimal after any number to force Maple to evalute as a
decimal. A third way is to right click on the output and select Approximate
followed by the number of digits you want to approximate to.

1.2 Variables and Functions

1.2.1 Variables

To assign a variable in Maple, enter the variable name followd be colon equals
and then the variable value, so theta:=Pi would assign the variable θ a value
of . Note here that Pi is a reserved name by Maple equal to 3:14159 : : :. There
are a few other reserved names, but for the most part, variable names can be
just about anything that starts with a letter.

It is possible to assign almost anything to a variable, so entering
foo:=exp(I*x) would assign the variable foo a value of eix. (The imaginary
number, i is represented by I in Maple and is another reserved name and the
exponential function e is exp()) If we were to then enter eval(foo,x=theta),
Maple would output -1, since = 2*π from before, and eπi. (Euler's Identity)
Similarly assigning x:=theta and then entering foo would yield -1.

To clear a variable simply assign the variable its own name in single quotes:

1.2.2 Functions

Functions in Maple are assigned by typing the function name, colon equals
( variable(s) ) in function, right arrow, followed by the function. For example
f:=(x,y)->x^2+y would assign the function f such that f(x; y) = x^2+y. Then,
entering f(2,3), would evalute to 7.

1.3 Maple Commands

Maple has an extensive dictionary of commands. Each command can be found
in the Maple documentation, along with examples and isntructions on how to
use a function. A list of useful commands can be found at the end of this

2 Optimization in Maple

Maple hides most of its functionality in various packages. To use these packages
enter with (packagename). A list of the functions contained within the package
will then be displayed. For optimization, use either the simplex package or the
Optimization package. Note that capitalization when loading a package does

Sometimes pacakges can contain several functions. If you do not want to
see the output (in this case the list of packages), simply follow up the command
with a colon to supress output. This can avoid screen clutter.

Each function in Maple has a speci c syntax. Maple contains extensive documentation
on all of its functions, which can be accessed through Help->Maple
Help or Ctrl + F1. Alternatively, you can enter ?commandnamehere to look up
the spec ed command name. (So ?int would bring up the help le for int)

2.1 The Simplex Package

First load the simplex package. with (simplex). A list of the various functions
contained in the simplex package should be displayed. The two important ones
are maximize and minimize. Both take in a list of constraints and the objective
function. An example of using the maximize function is below. Minimize is
used in the same way.

> with ( simplex )
[ basis , convexhull , c term , define_ zero , display ,
dual , feasible , maximize , minimize , pivot ,
pivoteqn , pivotvar , ratio , setup , standardize ]

> obj := x1+2x2+4x3

> constraints := {3x1+x2+5x3<=10,x1+4x2+x3<=8,2x1+2x3<=7}
{3*x1+x2+5*x3 <= 10 , x1+4*x2+x3 <= 8 , 2*x1+2*x3 <= 7}

> maximize ( obj , constraints ,NONNEGATIVE)
{x1 = 0 , x2 = 30/19 , x3 = 32/19}

Note that obj and constraints are simply variables, so you could have just
entered them directly into maximize without rst assigning them.

2.2 The Optimization Package

The Optimization package works very similarly to the simplex package, with
the main difference being the algorithm. The simplex package uses simplex to
optimize, while the Optimization package uses other more e cient algorithms.

> with ( simplex )
[ ImportMPS , Interactive , LPSolve , LSSolve , Maximize ,
Minimize , NLPSolve , QPSolve ]

> obj := x1+2x2+4x3

> constraints :={3x1+x2+5x3<=10,x1+4x2+x3<=8,2x1+2x3<=7}
{3*x1+x2+5*x3 <= 10 , x1+4*x2+x3 <= 8 , 2*x1+2*x3 <= 7}

> maximize ( obj , constraints , assume=nonnegative )
[9.89473684210526 , [ x3 = 1.68421052631578937 , x1 = 0 . ,
x2 = 1.57894736842105265] ]

> convert (%, rational )
[188/19 , [ x3 = 32/19 , x1 = 0 , x2 = 30 / 19 ] ]

Note that % here refers to the previous output. Similarly, %% would refer to the previous previous output, and so on. 188/19 is the value of the objective function at the optimal point.

2.3 Interactive Solver

The interactive solver can be accessed through
Tools->Assistants->Optimization.... The interactive solver is easy to use,
just enter the objective function and then the constraints and hit solve. Note
that when entering expressions into the interactive solver you must explicity
write out all the multiplications ( unlike in worksheet Maple). For example,
write 5*x1+2*x2, and not 5x1+2x2.

The interactive solver also has an option to plot the solution graphically up
to three variables.

3 Linear Algebra in Maple

To perform the majority of matrix ope rations first load the linear algebra package
with (LinearAlgebra). The linalg package may also be used, but its commands
are different that the ones listed here, and is a deprecated package (which
is being phased out). Examples of using common linear algebra functions below.

You may also use the Matrix editor in the left panel ( expand the matrix tab)
to insert a matrix. This is often easy to use, however, when multiplying matrices,
if you have a matrix with a dimension of 1 in either row or column,
Maple thinks it is a vector so you will need to use MatrixVectorMultiply or

4 Useful Maple Commands

What follows is a list of some of the more useful commands in Maple. Note that
commands can be nested within one another, so int (diff(x,x),x) would give

> restart #resets all variables , unloads all packages
> eval ( x^2+2x+1,x=1) #evaluates the expression at x=1
> evalf (Pi , 5) #evaluates the expression to 5 digits
> subs ( x=2x*y , x ^2) #subsitutes x=2*x*y into x^2 to give (2*x*y)^2
> diff (5x*y , x ) #differentiates with respect to x
> diff (5x*y , x$2 ) #differentiates with respect to x twice
> int ( sin ( x ) , x ) #integrates with respect to x
> int ( sin ( x )/x , x=0. . infinity ) #integrates from 0 to infinity to give Pi /2
> simplify ( x*y+2*x*y-3*x ) #simplifies the expression ( this is really useful )
> expand ( ( x+1)(x+2)) #expands a factored expression
> factor ( x^2+2x+1) #factors an expression
> exp ( Pi*I ) #the exponentiale , function
> solve (5*x+x*y^2=3 ,x ) #solves the equation for x
> solve ({eq1 , eq2 , eq3 }, [ x , y , z ] ) #solves the system o f 3 eqs for x ,y ,and z
Prev Next

Start solving your Algebra Problems in next 5 minutes!

Algebra Helper
Download (and optional CD)

Only $39.99

Click to Buy Now:

OR is an authorized reseller
of goods provided by Sofmath

Attention: We are currently running a special promotional offer for visitors -- if you order Algebra Helper by midnight of December 13th you will pay only $39.99 instead of our regular price of $74.99 -- this is $35 in savings ! In order to take advantage of this offer, you need to order by clicking on one of the buttons on the left, not through our regular order page.

If you order now you will also receive 30 minute live session from for a 1$!

You Will Learn Algebra Better - Guaranteed!

Just take a look how incredibly simple Algebra Helper is:

Step 1 : Enter your homework problem in an easy WYSIWYG (What you see is what you get) algebra editor:

Step 2 : Let Algebra Helper solve it:

Step 3 : Ask for an explanation for the steps you don't understand:

Algebra Helper can solve problems in all the following areas:

  • simplification of algebraic expressions (operations with polynomials (simplifying, degree, synthetic division...), exponential expressions, fractions and roots (radicals), absolute values)
  • factoring and expanding expressions
  • finding LCM and GCF
  • (simplifying, rationalizing complex denominators...)
  • solving linear, quadratic and many other equations and inequalities (including basic logarithmic and exponential equations)
  • solving a system of two and three linear equations (including Cramer's rule)
  • graphing curves (lines, parabolas, hyperbolas, circles, ellipses, equation and inequality solutions)
  • graphing general functions
  • operations with functions (composition, inverse, range, domain...)
  • simplifying logarithms
  • basic geometry and trigonometry (similarity, calculating trig functions, right triangle...)
  • arithmetic and other pre-algebra topics (ratios, proportions, measurements...)


Algebra Helper
Download (and optional CD)

Only $39.99

Click to Buy Now:

OR is an authorized reseller
of goods provided by Sofmath
Check out our demo!
"It really helped me with my homework.  I was stuck on some problems and your software walked me step by step through the process..."
C. Sievert, KY
19179 Blanco #105-234
San Antonio, TX 78258
Phone: (512) 788-5675
Fax: (512) 519-1805

Home   : :   Features   : :   Demo   : :   FAQ   : :   Order

Copyright © 2004-2017, Algebra-Answer.Com.  All rights reserved.